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Abstract. The author presents a multi-dimensional periodical algorithm like

the Jacobi-Perron Algorithm(multi-dimensional continued fraction expansion)
for any real algebraic number field of degree n(n ≥ 2). The author inserts a

lattice basis reduction process to that Jacobi-Perron algorithm and succeed to

get periodicity. This paper shows the algorithm and the proof of its periodicity.

1. Introduction

As well known, Lagrange showed that continued fraction expansion of any real
quadratic number become eventually periodic in 1770 (Lagrange’s continued frac-
tion theorem).

C.G.J.Jacobi and O.Perron extended that ordinal continued fraction algorithm
to higher degree number field (called as Jacobi-Perron Algorithm: JPA).

( About JPA,refer Zuzana Masakova’s workshop document [1] ).

Jacob-Perron algorithm (equivalent expression)
Let Q, θ and K = Q(θ) be respectively the rational numbers, a real algebraic

integer of degree n ( n ≥ 2) and the number field generated by θ over Q.
Suppose {α1(m) = 1, α2(m), . . . , αn(m)} ∈ Kn be linearly independent over Q,
then JPA is defined by the following recurrence relation.

(1) αi(m+ 1) =

{
(αi+1(m)− ⌊αi+1(m)⌋)/(α2(m)− ⌊α2(m)⌋) i=1,. . . ,n-1

1/(α2(m)− ⌊α2(m)⌋) i=n

The phrase of ”periodic” in this paper means that there exist such positive
integers s (startpoint), l(period) ∈ Z+, αi(s+ l) = αi(s) for i = 1, . . . , n.

Claim 1. When a sequence is periodic,
∏s+l−1

i=s (α2(m) − ⌊α2(m)⌋) is a non-trivial
unit of K.

Unfortunately JPA does not always produce periodic sequence. Succeeding many
mathematicians studied algorithms to obtain periodical sequence for stimulus dio-
phantine approximation , calculation of unit and/or another purpose.

• Leon Bernstein [2] [3] found many classes that JPA sequences are periodic.
• E.V.Podsypanin [4] improved JPA as the modified JPA (MJPA) by swap-
ping of order in a tuple and found many classes that MJPA become periodic.
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MJPA is similar to JPA except assurance of the following inequality by
term swapping,

(2) (α2(m)− ⌊α2(m)⌋) ≤ (αi(m)− ⌊αi(m)⌋) for any i ≥ 2)

• Paul Voutier [5] showed that there are infinitely many classes which have
any given period and that for every real cubic number field there is a pair
of numbers with periodic Jacob–Perron expansion.

• E. Dubois and R. Paysant-Le Roux [6] showed periodical algorithm about
any cubic fields when a non-trivial unit is given.

• Shin-ichi Yasutomi and Jun-ichi Tamura [7] presented an algorithm named
as the algebraic JPA (AJPA), and by their numerical experiments AJPA
sequence become periodic in 3,4 degree number field.

AJPA is similar to MJPA but the inequality is different such as

(α2(m)− ⌊α2(m)⌋)/norm((α2(m)− ⌊α2(m)⌋))

(3) ≤ (αi(m)− ⌊α(m)⌋)/norm((αi(m)− ⌊α(m)⌋)) for any i ≥ 2

instead of (α2(m)− ⌊α2(m)⌋) ≤ (αi(m)− ⌊α(m)⌋) for any i ≥ 2.

However these JPA like algorithms have some limitation ,like as ’not all real
algebraic number fields’ or ’units are given and so on.

The author has found a JPA like algorithm that produces periodic sequence by
adoption of coefficient size reduction in arbitrary real algebraic number field (noted
as rJPA in this paper). This paper describes the algorithm and proof of periodicity.
Furthermore as a corollary, a unit of K = Q(θ) is derived by using this algorithm.

2. Notations and remarks

Following notations are used in this paper.

• Q: the rational numbers
• Z: the rational integers
• θ: a real algebraic integer of degree n (where n ≥ 2)
• K: = Q(θ)
• M(n,Z): the n-th integer square matrices.
• GL(n,Z): the n-th unimodular matrix group.
• English letters with subscript such as aij , bij express rational numbers.
Greek letters with subscript such as αi, βi express elements of K.

• We assume the expression αi =
∑n

j=1 aijθ
j−1, βi =

∑n
j=1 bijθ

j−1.

• det(M): the determinant of a matrix M
• σi (i = 1, . . . , n): isomorphisms which transfer θ to an another conjugate
of θ, where σ1 be the identity map.

• βi • βj :
def
=

∑n
k=2 bikbjk

• {αi}: a column vector of K, where i = 1, . . . , n and α1 = 1.
• {αi}σ: the n-square matrix which (i,j) element is σj(αi)
• {aij}: the n square matrix of which (i, j) element equals to aij where
i, j = 1, . . . , n.

Note. {αi} = {aij}{θ(i−1)}.

• {bij}′: the n − 1 square matrix of which (i, j) element equals to bij where
i, j = 2, . . . , n.
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• norm(ξ): =
∏n

i=1 σi(ξ) for ξ ∈ K

Note. If ξ is an algebraic integer of K, norm(ξ) is an rational integer.

Note. For ξ ∈ K, det({ξαi}σ) = norm(ξ)det({αi}σ).

• D:
def
= {θ(i−1)}σ

Note. det(D)2 is the discriminant of θ and is not zero.

Note. For αi =
∑n

j=1 aijθ
j−1, aij = det({1, θ, , θ(j−1), αi, θ

(j+1), , θ(n−1)}σ)/det(D)

Note. {αi}σ =

σ1(α1) · · · σn(α1)
. . . . . . . . . . . . . . . . . . . . .
σ1(αn) · · · σn(αn)

 = {aij}{θ(i−1)}σ.

a1j =

{
1 j=1

0 j=2,. . . ,n

• rdet(m):
def
= det({αi(m)}σ)/det(D)(= det({aij(m)}))

Note. rdet(m) = det({aij(m)}) (i = 2, . . . , n, j = 2, . . . , n) because α1 = 1

• Round(x)1: If the fraction part of x is 0.5 then the nearest even integer to
x else the nearest integer to x.

Note. Thus Round(0.5) = Round(−0.5) = 0.

3. Definition of rJPA(coefficient size reducing JPA)

The proposed algorithm (called as rJPA in this paper) is consisted of the coeffi-
cient size reduction step and the successor calculation step. The coefficient reduc-
tion algorithm is an algorithm to obtain {βi} ∈ Kn for given {αi} ∈ Kn (where
α1 = 1 and β1 = 1 ) which satisfies the following conditions(*) . An example of
such algorithm is shown at the section 5.

Reduction condition(*)

(4) ∃T ∈ GL(n,Z), T{aij} = {bij}

(5)

n∏
i=2

(

n∑
j=2

b2ij) ≤ C1 ∗ det({bij}′)2

where C1 is a constant depend only the degree n.

(6)

n∑
j=2

b22j ≤
n∑

j=2

b2ij

Claim 2. The above condition (4) is equivalent to that Z[α1 = 1, α2, . . . , αn] =
Z[β1 = 1, β2, . . . , βn] as Z−module.

Note. det({αi}σ) = det({β}σ).

1This can be replaced with another type of rounding function which satisfys Round(0.5) ∗
Round(−0.5) = 0
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If there is a unimodular matrix T ′ ∈ GL(n − 1,Z) such that T ′{aij}′ = {bij}′,
then the above condition 4 is satisfied.

∵ It is clear from setting T1 to

(
1 0
0 T ′

)
and setting {βi} to T1{αi}.

Now We define rJPA n-tuple sequences {αi(m)} by induction with respect m as
the followings.

Definition of rJPA: The rJPA is continuously repeating algorithm of the coeffi-
cient reduction step (CR-step) and the succeeding n-tuple computing step (SC-step)
with the initial n-tuples {αi(1)} = {θ(i−1)}.

3.1. CR-step: Transform a n-tuple{αi(m)} to a reduced coefficient n-tuple
{βi(m)} by a coefficient reduce algorithm.

Note. We can apply a coefficient reduction algorithm and obtain reduced coeffi-
cients..

3.2. SC-step: Transform a n-tuple {βi(m)} to the succeeding n-tuple
{αi(m+ 1)} like as the following.

(7) ui(m) = Round(βi(m)) (i = 2, . . . , n)

(8) αi(m+ 1) =

{
(βi+1(m)− u(i+1)(m))/(β2(m)− u2(m)) i=1,. . . ,n-1

1/(β2(m)− u2(m)) i=n

Claim 3. {αi(m+ 1)} = T2(m){βi(m)}/(β2(m)− u2(m)),

where T2(m) =


−u2(m) 1 0 · · · 0
−u3(m) 0 1 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . .
−un(m) 0 · · · 0 1

1 0 · · · 0 0


Therefore

|det({αi(m+ 1)}σ)| = |det({βi(m)}σ)/norm(β2(m)− u2(m))|
= |det({αi(m)}σ)/norm(β2(m)− u2(m))|

4. Theorem and proof

We will prove our theorem by following scenario and contradiction. At first
We will show 1/rdet(m) is a rational integer and that rJPA sequence elements
divided by rdet(m) are elements of Z[θ]. Then if rJPA sequence will not be periodic
,rdet(m+1) must divert to∞, finally causes a contradiction. Thus by contradiction,
we can conclude rJPA sequence must become periodic.

Proposition 1. There is a matrix A(m) of GL(n,Z) such that {(αi(m)} =

A(m){θ(i−1)}/(
∏m−1

k=1 (β2(k) − u2(k))). Furthermore
∏m−1

k=1 (β2(k) − u2(k)) is an
element of Z[θ].

Proof. We use induction with respect to m. Notations are same to the ones in the
definitions.
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As {βi(m)} = T1{αi(m)}, {αi(m+ 1)} = T2{βi(m)}/(β2(m)− u2(m))
therefore

{αi(m+ 1)} = T2T1{αi(m)}/(β2(m)− u2(m))

= T2T1A(m){θ(i−1)}/
m−1∏
k=1

(β2(k)− u2(k)/(β2(m)− u2(m))

= A(m+ 1){θ(i−1)}/
m∏

k=1

(β2(k)− u2(k)).

By induction ,the first statement is satisfied.

As α1(m) = 1,
∏m−1

k=1 (β2(k) − u2(k)) is the (1,1) element of A(m){θ(i−1)},this
means an element of Z[θ]. i.e. the second statement is also satisfied. □

Cororraly 4.1. {αi(m)} can be expressed as αi(m) = ξi(m)/ξ1(m) by using
ξ1(m), , , ξn(m) ∈ Z[θ].

∵ Under an expression {ξi(m)} = A(m){θ(i−1)}, ξ1(m) =
∏m−1

k=1 (β2(k)− u2(k)).
Hence αi(m) = ξi(m)/ξ1(m).

Cororraly 4.2. rdet(m) = 1/norm(
∏m−1

k=1 (β2(k)−u2(k))) = 1/
∏m−1

k=1 norm(β2(k)−
u2(k)).

Proposition 2. Suppose that αi(m) =
∑n

j=1 aij(m)θ(j−1) for rJPA sequence {αi(m)},
then aij(m)/rdet(m) are rational integers and 1/rdet(m) is also a rational integer.

Proof. By Proposition 1, We have the following formula (9).

(9) ∃A(m) ∈ GL(n,Z), {(αi(m)} = A(m){θ(i−1)}/(
m−1∏
k=1

(β2(k)− u2(k))).

Then as θ is an algebraic integer and
∏m−1

k=1 (β2(k)−u2(k))){θ(i−1)} is an element
of Z[θ], we obtain

(10) ∃M ∈ M(n,Z), (m−1
k=1 (β2(k)− u2(k))){θ(i−1)} = M{θ(i−1)}

From the formula (9), (10) and {αi(m)} = {aij(m)}{θ(i−1)}, we get

(11) {aij(m)}M{θ(i−1)} = A(m){θ(i−1)}
This formula implies the following formula (12) because 1, θ, . . . , θn−1 is linearly

independent over Q.

(12) {aij(m)}M = A(m)

Therefore the following relation (13) is satisfied.

(13) {aij(m)}/rdet(m) = A(m)M−1 ∗ det(M)

On the other hand, M−1∗det(M) is the adjugate matrix (or transpose of cofactor
matrix) of M by the Cramer’s rule and is an integer matrix when M is an integer
matrix. This means that {aij(m)}/rdet(m) is an integer matrix.
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Therefore aij(m)/rdet(m) are integers and 1/rdet(m) is also an integer because
a11 = 1.

□
Cororraly 4.3. Absolute value |rdet(m)| ≤ 1

Cororraly 4.4. bij(m)/rdet(m) are integers.

Now, we will investigate what happen if tupul sequence of rJPA {αi(m)} wouldn’t
be periodic.

Lemma 1. If rJPA sequence {αi(m)} wouldn’t be periodic, then
limm→∞ |norm(β2(m)− u2(m))| ≤ (1/2)n < 1.

Proof. We will prove this lemma in the following order by using contradiction.
(1) limm→∞rdet(m) = 0
(2) limm→∞ b2j(m) = 0.

(3) limm→∞ |b21(m)− u2(m)| ≤ 1/2 < 1
(4) limm→∞ |norm(β2(m)− u2(m))| ≤ (1/2)n < 1.

Proof of (1): If limm→∞ rdet(m) is not 0 ,then there is an ϵ > 0 such that
|rdet(m)| > ϵ for infinitely many m ∈ Z+. By the reduction condition (*) ,

n∏
i=2

n∑
j=2

(bij(m)2)/rdet(m)2 ≤ C1det(bij(m))2/rdet(m)2(14)

≤ C1rdet(m)(2−2(n−1))(15)

< C1ϵ
2(2−n)(16)

for infinitely many m. While the value of the left hand side of this inequality is
an integer and the value of the right hand side is upper bounded for infinitely
many m. The absolute values of |bi1(m)− ui(m)| are also upper bounded because
bij(m)2 (j ≥ 2) are upper bounded and |βi(m) − ui(m)| ≤ 1/2. Therefore same
combinations of {bij(m) (j ≥ 2), bi1(m) − ui(m)} must appear. However same
combination appearance is contradict to aperiodicity. Hence limm→∞rdet(m) = 0.

Proof of (2): We recall
∏n

i=2

∑n
j=2(bij(m)2) ≤ C1rdet(m)2 again.

As
∑n

j=2 b2j(m)2 ≤
∑n

j=2 bij(m)2,
∑n

j=2 b2j(m)2 ≤ (C1 ∗ rdet(m))(1/(n−1)).

Therefore limm→∞(
∑n

j=1 b2j(m)2) = 0. Hence limm→∞ b2j(m) = 0 (j = 2, . . . , n)

Proof of (3): It is clear from (2) and |β2(m)− u2(m)| ≤ 1/2.

Proof of (4): By (2) and (3), limm→∞ |σj(β2(m) − u2(m))| ≤ 1/2. Therefore

limm→∞
∏n

j=1 |σj(β2(m)− u2(m))| ≤ (1/2)n < 1.

This means that limm→∞ |norm(β2(m)− u2(m))| ≤ (1/2)n < 1
□

Now We are ready to prove the theorem.

Theorem 1. rJPA produces periodic sequences.

Proof. We use contradiction. According rdet(m + 1) =
∏m

k=1(1/norm(β2(k) −
u2(k))) and the above Lemma 1, |

∏m
k=1(1/norm(β2(k)−u2(k)))| diverges to∞. On
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the other hand Proposition-2 corollary-4.3 requires |rdet(m)| ≤ 1. Contradiction.
Hence rJPA sequence must become periodic. □

Cororraly 4.5. Suppose that {αi(s+l)} = {αi(s)}. Then the product
∏s+l−1

k=s (β2(k)−
u2(k)) is an non-trivial unit of K in Z[θ]

Proof. By the proposition 1,

A(s+ l){θi−1}/
∏s+l−1

k=1 (β2(k)− u2(k)) = A(s){θi−1}/
∏s−1

k=1(β2(k)− u2(k)). Thus∏s+l−1
k=s (β2(k) − u2(k)) is an eigenvalue of a unimodular matrix and {θi−1} is the

eigen vector of that matrix. Hence this product is a unit of K = Q(θ) and this unit
locates in Z[θ]. By 1/|β(m)2− u2(m)| > 1, it is non trivial. □

Here the remained item to be proven is to show the existence of algorithms for
the reduction condition(*).

5. Instances of coefficient reduction algorithm

The following algorithms are instances of coefficient reduction algorithm.
(1) case of n = 2
It is trivial for this case and We can set {βi} = {αi} .

(2) case of n = 3 : basicaly same to the Gauss’ Algorithm.
{βi} := {αi} :
REPEAT

{γi} := {βi} :

β2 := β2 −Round(β2•β3

β3•β3
) ∗ β3;

β3 := β3 −Round(β2•β3

β2•β2
) ∗ β2;

UNTIL {γi} == {βi};
IF β3 • β3 < β2 • β2 THEN SWAP β2 and β3 ENDIF ;

This process terminates because the following three reasons.

(i) The value of β2 • β2 + β3 • β3 decrease weakly monotonically.
(ii) Coefficients of β2 and β3 are rational numbers.
(iii) Round(0.5)=Round(-0.5)=0 .

By the identical equation (ad − bc)2 + (ac + bd)2 = (a2 + b2)(c2 + d2), we have
(det({1, β2, β3}′)2 + (β2 • β3)

2 = (β2 • β2) ∗ (β3 • β3). The process termination
means |β2 • β3| ≤ (β2 • β2)/2 and |β2 • β3| ≤ (β3 • β3)/2. Thus (β2 • β3)

2 ≤
1
4 ∗ (β2 • β2) ∗ (β3 • β3).

Hence (β2 • β2) ∗ (β3 • β3) ≤ 4
3 ∗ det({1, β2, β3}′)2

This {βi}(= {
∑3

j=1 bijθ
j−1)}) is the desired one.

Obviously this algorithm keeps Z[1, α2, α3] = Z[1, β2, β3] and satisfy the reduc-
tion condition(*) with C1 = 4

3 .

3)case of n ≥ 4

We can use L.L.L. algorithm [8] which were developped by Lenstra,Lenstra and
Lovasz. The L.L.L. algorithm is a lattice basis reduction algorithm which calcu-
lates a short, nearly orthogonal lattice basis. Details are described in their paper
”Factoring Polynomials with rational coefficients” [8].



8 KIYOHISA TANIMOTO

the inequality (1.8) of their paper says,

b1, b2, . . . , bn be a reduced basis for a lattice L ∈ Rn

(1.8) d(L) ≤
∏n

i=1 |bi| ≤ 2n(n−1)/4d(L),
where || means the euclidean metric and d(L) is the determinant of the basis of the
lattice L. By the L.L.L. algorithm , |b1| ≤ |bi| for any i.

The right inequality part of this (1.8) means in our case∏n
i=2(

∑n
j=2 b

2
ij)

1/2 ≤ 2(n−1)(n−2)/4 ∗ det({bij}) where i = 2, . . . , n, j = 2, . . . , n.

Therefore,
∏n

i=2(
∑n

j=2 b
2
ij) ≤ 2(n−1)(n−2)/2 ∗ det({bij})2 where i = 2, . . . , n, j =

2, . . . , n
This inequality satisfies the our reduction condition(*) with C1 = 2(n−1)(n−2)/2.

L.L.L. Algorithm is described at from (1.15) P.518 through to P.522 (1.25)

Hence our Theorem and its Corollary are completely proved.
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